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A method is presented for solving turbulent flow problems on three-dimensional unstructured grids.
Spatial discretization is accomplished by a cell-centered finite-volume formulation using an accurate lin-
ear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward-
Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation
model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the
boundary layer. A systematic assessment of the method is presented to devise guidelines for more strate-
gic application of the technology to complex problems. The assessment includes the accuracy in predic-
tions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent
boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow
condition.
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Introduction
Significant advancements are being made toward solving

complex viscous flows on three-dimensional configurations
using unstructured-grid methodology [1-8]. While solving
such flows on highly-stretched tetrahedral cells is consider-
ably more difficult than on hexahedral cells, the primary ad-
vantage is derived from the greatly reduced grid generation
times. Ref. [9] has demonstrated that ‘viscous’ grids can be
easily generated on complex shapes by the Advancing Front
/ Advancing Layers methodology (AFM/ALM). It is antici-
pated that in the near future, viscous tetrahedral grids will
be generated on complex geometries in a matter of days, as
are inviscid tetrahedral grids today.

The viscous, tetrahedral-based unstructured flow solution
methodology is maturing along two tracks; node-centered
and cell-centered schemes, each with their relative merits.
Node-centered schemes exploit an efficient edge-based data
structure, and have demonstrated multigrid and parallel
computer implementations [2,5], but generally require large
tetrahedral grids. Cell-centered schemes exploit geometric
features of tetrahedra for constructing accurate spatial re-
construction schemes, and provide comparable accuracy
with fewer tetrahedra, but have not been extended to multi-
grid or parallel architectures, and have exhibited some limi-
tations in solution stability.

There is a need for systematic assessments of the accu-
racy and behavior of the various schemes. The present work
focuses on an assessment of the upwind, tetrahedral cell-
centered finite-volume scheme of Ref. [10]. This method is
extended herein to include the Spalart-Allmaras one-equa-
tion turbulence model, and the coupling of that model with a
wall function to reduce the number of cells in the sublayer
region of the boundary layer. It is anticipated that the wall
function approach may be applicable to 3D separated flows
since flow is not stagnant along separation lines.

The assessments will be derived from the flat-plate
boundary layer problem, and the ONERA M6 wing at a
high Reynolds number, transonic, separated flow condition.
Key issues will be addressed related to applying a tetrahe-
dral based, cell-centered Navier-Stokes method to turbu-
lent-flow problems. The objectives of the study are to:

1. assess the accuracy of computing turbulent-flow
pressure distributions and skin friction coeffi-
cients with tetrahedral cells,

2. investigate the accuracy and utility of a wall func-
tion formulation for computing 3-D high Rey-
nolds number, transonic, separated flow with tet-
rahedral cells,

3. establish guidelines for generating unstructured,
tetrahedral ‘viscous’ grids for solving turbulent
flow problems accurately and efficiently,

4. demonstrate a mesh sequencing strategy for accel-
erating solution convergence.

Governing Equations
The fluid motion is governed by the time-dependent

Navier-Stokes equations for an ideal gas which express the
conservation of mass, momentum, and energy for a com-
pressible Newtonian fluid in the absence of external forces.
The equations are given below in integral form for a
bounded domainΩ with the boundary∂Ω

(1)
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and

where

The equations are nondimensionalized with freestream
reference values for density  and a speed of sound .
Here and  are Cartesian components of the exte-
rior surface unit normal  on the boundary . The Carte-
sian velocity components are u, v, and w in the x, y, and z
directions, respectively. The term is the total energy per
unit volume. The Prandtl number, Pr, is assigned a value of
0.72, and the turbulent Prandtl number, Prt , the value 0.9.
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Laminar viscosityµ, is computed by Sutherland’s law. With
the ideal gas assumption, the normalized values for pressure
and temperature can be expressed as

and

whereγ is the ratio of specific heats and is prescribed as 1.4
for air.

Numerical Procedure
A finite-volume discretization is applied to Eq. 1 which

results in a consistent approximation to the conservation
laws where the time rate of change of the state vectorQ
within the domainΩ is balanced by the net fluxes ofF and
G across the boundary surface . The spatial domain is
divided into a finite number of tetrahedral cells, with each
element serving as a computational cell. Thus, the dis-
cretized solution to Eq. 1 results in a set of volume-averaged
state variablesQ which are in balance with the area-aver-
aged fluxes (inviscid and viscous) across the cell faces.

Inviscid Fluxes
Inviscid flux quantities are computed across each cell

face using the Roe [11] flux-difference splitting approach
(FDS), or the Van Leer [12] flux-vector splitting technique
(FVS). Spatial discretization is accomplished by a novel cell
reconstruction process, which is based on an analytical for-
mulation for computing solution gradients within tetrahe-
dral cells.

Cell reconstruction scheme

The higher-order reconstruction scheme, derived in Ref.
[10] and illustrated in Fig. 1, is based on a Taylor series ex-
pansion of the cell-averaged solution to the cell face. A key

Fig. 1 Reconstruction stencil for tetrahedral cell-centered
scheme.
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component of the scheme is the reconstruction of surround-
ing cell-averaged data to a common vertex or node by a
weighted averaging procedure. Reference [13] proposed a
scheme based on an inverse-distance weighted averaging of
the primitive variables from the cell centroid to the cell ver-
tices. While this approach has proven to be both accurate
and robust through wide application to inviscid problems, it
is not fully second-order accurate in space. It has been
shown in Ref. [14] to be approximately 1.85-order accurate.

 As development efforts progressed toward solving the
Navier-Stokes equations on highly stretched tetrahedral
grids, it became evident that the accuracy of the inverse-dis-
tance averaging scheme was not adequate. Thus, a fully sec-
ond-order accurate averaging procedure was implemented
which is based on work by Holmes and Connell [4] and
Rausch, et. al. [15]. The procedure is derived by solving a
constrained minimization problem to determine weight fac-
tors which satisfy Laplacian relationships presented in Ref.
[10]. The algorithm reconstructs to machine accuracy the
exact values of a linear function at a node from surrounding
cell-centered function values on an arbitrary tetrahedral
grid. Furthermore, the simple universal formula shown in
Fig. 1 for expanding the cell-centered data to the cell faces
also reconstructs the exact value of a linear function to the
cell face. Thus, the entire spatial reconstruction scheme is
termed second-order accurate, which has been verified by
Mitchell [14].

There is, however, an unresolved shortcoming to the
Laplacian-weighted averaging scheme. Each weight factor
is assumed to vary by some small perturbation from 1. In
order to achieve an exact reconstruction on highly stretched
cells, these perturbations can actually become on the order
of one, thus resulting in some negative weight factors.
While it can be demonstrated that the computed weight fac-
tors produce an exact linear reconstruction, those with nega-
tive values violate the principle of positivity, with a detri-
mental impact on stability during convergence [16,17]. It is,
thus, necessary to clip the weight factors between 0 and 2,
thereby losing some of the exactness of the linear recon-
struction, but ensuring a more stable scheme.

Viscous Fluxes
The viscous fluxesG(Q) are approximated at the cell-face

centroids by linear reconstruction which provides a continu-
ous representation of the solution variables across the cell
faces. The stencil, presented by Mitchell [14], utilizes the
averaged solution quantity at the three vertices of a cell
face,qn1, qn2, andqn3, and the cell-centered values of the
two cells sharing the face,qc1 andqc2,whereq≡(ρ,u,v,w,p).
The derivatives for u, v, w, and T in Eq. 1, e.g. forux, uy,
anduz, are derived from a Cramer’s rule solution to

(2)

Time Integration
The viscous computations are advanced to steady state by

the implicit time integration algorithm of Ref. [18]. The
scheme uses the linearized, backward Euler time differenc-
ing approach to update the solution at each time step for the
set of equations
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where

The linear system of equations are solved at each time
step with a subiterative procedure where the tetrahedral
cells are grouped into “colors” (different from face-color-
ing) such that no two cells share a common face.

Thus, the solution is computed by solving for all the un-
knowns in a particular color by a point-Jacobi subiteration
step before proceeding to the next color. Since the solution
of the unknowns for each group can depend on those from
previously computed groups, a Gauss-Seidel-like effect is
realized. The method has the advantage of being completely
vectorizable.

Because of the number of operations required to invert a
matrix depends on the matrix bandwidth, the left-hand side
of the system of linear equations is evaluated with first-
order differencing to reduce both required storage and com-
puter time. Convergence of the subiterations is further ac-
celerated by using Van Leer's Flux Vector Splitting (FVS)
on the left-hand side. Thus in the present study, first-order
differencing and FVS are applied to the left-hand side, and
higher order differencing and FDS to the right-hand side.
The viscous Jacobian terms are included in the left-hand
side of the equation.

It is necessary to store , which is a 5X5 matrix for
each cell, thus, storage requirements are 180 words/cell for
the implicit code. The code requires 84µs/cell/cycle on a
CRAY Y-MP, or 37µs/cell/cycle on a CRAY C-90, with 20
subiterations and higher-order differencing. For compari-
son, the block-structured code CFL3D [19] requires approx-
imately 50 words/cell and 12µs/cell/cycle on a Cray C-90.
While there may be some room for further improvement in
resource requirements of the unstructured code, such codes
are typically more computer-intensive because of their gen-
eralized data structure. The success of this new technology
will hinge on reducing the time and expense of generating
viscous grids.

Convergence acceleration

Convergence to the steady state solution is accelerated by
sacrificing the time accuracy of the scheme, and advancing
the equations at each mesh point in time by the maximum
permissible time step in that region. Even with such a local
time stepping strategy, experience with solving 3-D viscous
problems with the present cell-centered scheme has shown
that maximum Courant, Friedrichs, Lewy (CFL) number is
limited to approximately 25. This limitation is a conse-
quence of violating the principle of positivity in weighting
factors, as noted an earlier section and in Refs. [16, 17].

The inherent stability limitation can be improved by scal-
ing the CFL number according to the deviation of cell as-
pect ratio from the ideal value of an isotropic tetrahedron.
This enables the dominate flow field to evolve quickly with
the higher CFL numbers, while restricting the more temper-
amental ‘viscous’ cells. A relation has been derived
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where ,
and f∆t is a scale factor. Here, Vc is the cell volume, and
Sf,max is the area of the largest face of the cell.

The computations presented in this paper were performed
with a scale factor off∆t=6. Thus, for a prescribed setting of
CFL=150, the actual CFL number will be linearly scaled
between 25 for the thinnest tetrahedral cell to 150 for the
most isotropic cell. The ultimate benefit of this procedure
was a factor-of-two reduction in required solution cycles
and, hence, computer time.

Turbulence Model

Spalart-Allmaras
Closure of the Reynolds stress is provided by the one-

equation Spalart-Allmaras (S-A) turbulence model [20].
This model is derived “using empiricism and arguments of
dimensional analysis, Galilean invariance, and selective de-
pendence on the molecular viscosity”. The model solves a
partial differential equation (PDE) over the entire field for a
working variable, , from which the eddy viscosity,µt, can
be extracted. The PDE is solved separately from the flow
equations using the same backward Euler time integration
scheme, which results in a loosely coupled system. The pro-
duction and destruction terms have been modified as recom-
mended in Ref. [20] to ensure positive eddy viscosity
throughout the computation.

On ‘no-slip’ surfaces, the dependent variable is set to
zero. For tangent-flow surfaces, a zero gradient of the vari-
able is applied. Far field boundary conditions are applied by
extrapolating  from the interior for outflow boundaries,
and taken from the free stream for the inflow.

The S-A model requires that the distance of each cell to
the nearest wall be provided for the near-wall damping
terms for cells which are in proximity to ‘viscous’ surfaces.
These distances are determined prior to code execution for
cells in the “viscous” layers and contribute to only a small
portion of the overall overhead.

Wall Function
The S-A model has been coupled with a wall function for-

mulation to reduce the need for grid-resolving the flow in
the sublayer portion of a turbulent boundary layer. With this
approach, the inner region of the boundary layer is modeled
by an analytical function which is matched with the numeri-
cal solution in the outer region. This has the advantage of 1)
significantly reducing memory requirement by eliminating
a large portion of cells normally required to resolve the sub-
layer, and 2) improving overall convergence by removing
the thinner, more highly stretched cells which add stiffness
to the solution process. A similar approach was successfully
demonstrated in Ref. [21] where a two equation k-ε turbu-
lence model was coupled with a wall function in a modified
version of the present code.

The present implementation of a wall function exploits
the inherent “structure” present in viscous unstructured
grids produced by the Advancing Layers Method [9]. As ev-
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ident in Fig. 2, the tetrahedral vertices or nodes are aligned
along rays emanating from the surface.

The selected wall function is a law-of-the-wall expression
[22] derived by Spalding in 1961. With a single function, it
models the inner laminar sublayer, a transition region, and
the intermediate logarithmic layer of the turbulent boundary
layer:

(5)

where the nondimensionalized terms are

Hereρw, µw are the fluid density and laminar viscosity on
the surface, respectively, and |V1| the velocity magnitude at
an adjacent point located a normal distance n1 away;u* is
the friction velocity;κ=0.4 and, B=5.5.

A face-centered, “slip” velocity boundary condition is de-
termined by a two-step process. First as illustrated in Fig. 2,
ρw andµw are assigned values from a boundary node, and
|V1| is defined by the reconstructed velocity magnitude at
the first connected node which is located n1 above the sur-
face. Eq. 5 is then solved by Newton-Raphson iteration for
u*, which is assumed to apply at the boundary nodes.

Next, the computed friction velocities,u*, from three
nodes comprising a boundary face (shaded surface in Fig. 2)
are averaged to establish a face-centered value, and standard
face-centered flow boundary condition quantities are pre-
scribed forρw andµw. The parameter, n1 , is the normal dis-
tance to the centroid of the boundary tetrahedral cell. With
these values, Eq. 5 is solved once again by Newton-Raph-
son iteration for the velocity magnitude, |V1|. A slip-veloc-
ity boundary condition is defined by assigning the new |V1|
to the boundary face, and multiplying it with direction co-
sines extracted from a standard inviscid-type flow-tangency
velocity vector.

A wall boundary condition for turbulent viscosity, which
is required by the S-A PDE equation, is computed from a re-
lation presented in Ref. [22]

Fig. 2 Inherent “structure” of thin-layer tetrahedral grids.
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(6)

where u+=|V1|/u* from the boundary face.

The present implementation considers no adjustment to
adiabatic wall density, which is important to high speed
flows. This effect will be included in future work.

Results
Results are presented below for the flat-plate boundary

layer problem, and the ONERA M6 wing at high Reynolds
number, transonic, separated flow conditions. The normal
grid spacing across the boundary layer is prescribed by the
exponential function

(7)

such that nj = nj-1 + ∆nj-1.

The parameter∆n1 is the spacing of the first node above
the surface, whilea andb are parameters which control the
growth. An initial estimate of the normal point distribution,
n+, etc., is determined by experimenting with parameter
variations on an assumed 1/7th law velocity profile.

Flat-Plate Boundary Layer
The flat-plate boundary layer solution is used to assess

the accuracy of the wall function in predicting flat-plate tur-
bulent skin friction. The computations were made on quasi-
2D unstructured grids forM∞=0.5, ReL=2×106.

Grid 1 was generated by constructing a 49X12 H-topol-
ogy structured grid with a normal spacing defined by
∆n1=0.001L, a=0.3, andb=0.07 in Eq. 7, which yields
roughly 5 nodes across the boundary layer at x/L=0.5 and
an approximate n+ at the first node of 80. The resulting
upper domain boundary (k=12) is located at 0.22L. The 2D
grid was stacked spanwise in 0.02L increments to form
three planes resulting in a 3D structured dual-channel grid
(49X3X12) of H-H topology. Each hexahedral cell was sub-
divided into 2 prismatic cells, which were further subdi-
vided into 3 tetrahedra each to form the 3D unstructured
grid with 15,552 cells. The “flat plate” was defined by a co-
sine clustering between the “structured” indices

along thek=1 boundary with inviscid flow pre-
scribed on thek=1 boundary ahead of the plate. Boundary
conditions of constant entropy and constant total enthalpy
were prescribed on the inflow plane, while an extrapolation
condition was applied to the upper and exit domain bound-
aries. A constant freestream pressure was also imposed on
the exit plane.

A second grid was generated in a similar manner as the
first to explore the lower limits of grid coarseness on solu-
tion accuracy. Grid 2 was constructed from a 49X6 H-topol-
ogy with the Eq. 7 parameters of∆n1=0.001L,a=2.0, and
b=0.07. This resulted in a 3D channel grid (49X3X6) with
2,880 cells, and an upper domain boundary (k=6) also at
0.22L.

Fig. 3 portrays the effect of normal grid density on the
law-of-the-wall behavior at x/L=0.5, Rex=1×106, for the two
grids. The plotted nodal solutions were reconstructed from
the surrounding tetrahedral cells using the weighted averag-
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ing procedure discussed in an earlier section. Note that the
first nodal value is matched with the log layer at approxi-
mately n+=80 for both grids. Grid 1 has 5 nodes across the
boundary layer, while Grid 2 has 3 nodes.

The true test of the methodology is reflected in the skin
friction coefficient in Fig. 4. Grid 1 displays excellent
agreement over 0.2<x/L≤1.0 with the theoretical coefficient
for fully turbulent flow, , which is
based on the 1/7th power law assumption. Grid 2 does not

exhibit the same level of agreement, but is remarkably close
considering its extreme grid coarseness across the boundary
layer in Fig. 3.

Based on experience with structured-grid computations,
one would expect to need between 15 and 40 cells to ade-
quately resolve turbulent boundary-layer flow, Thus, the re-
sults of Figs. 3 and 4 require further analysis. As noted ear-
lier, each hexahedral cell is subdivided into 2 prismatic

Fig. 3 Effect of grid density on law-of-the-wall behavior for
flat-plate boundary layer flow, x/L=0.5 (M∞=0.5, ReL=2X106).

Fig. 4 Effect of grid density on skin-friction coefficient for flat-
plate boundary layer flow (M∞=0.5, ReL=2X106).
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cells, which are each subdivided further into 3 tetrahedral
cells. For a cell-centered scheme, each tetrahedron func-
tions as one computational cell. Thus, a cell-averaged solu-
tion resolves the solution at three vertical positions within
each prismatic cell, (for a total of six locations within the
hexahedral cell). In contrast, a cell-centered structured-grid
code [19], or prismatic unstructured code [23], would re-
solve the solution at only one vertical position within their
respective cell layers. Hence in Fig. 3, there are actually 3
tetrahedral centroids between each plotted solution point
which contribute to those points through the reconstruction
process mentioned earlier. One can conclude from this dis-
cussion that it is more correct to consider the boundary layer
as being resolved by 15 cells in Grid 1, and 9 cells in Grid 2,
rather than by 5 and 3 nodes, respectively.

One final note; the spurious behavior in the computed
skin friction present near the plate leading edge

 in Fig. 4 may be due to some numerical anom-
alies of the weighted averaging scheme at the stagnation
point where an inviscid surface suddenly changes to a vis-
cous surface. The author plans to revisit this anomaly at a
later date. The principal interest for the present study is in
the fully developed turbulent flow over the remaining re-
gion of the plate.

ONERA M6 Wing

Grid generation

Tetrahedral viscous and inviscid grids were generated for
the ONERA M6 wing using the VGRIDns code [9]. The
VGRIDns code is based on the advancing-front method
(AFM) for generating triangular surface mesh and tetrahe-
dral volume cells.

The distribution of surface and field grid points is con-
trolled by a ‘structured’ background grid [24]. This trans-
parent grid consists of Cartesian mesh overlaying the entire
domain upon which the user prescribes ‘point’ and ‘line’
sources to impose the desired spacing distribution. Parame-
ters are available to control cell size, and the direction and
intensity of spatial variation. Cells can be stretched aniso-
tropically in directions of small gradients in order to reduce
the overall grid size. A smooth variation of spacing is
achieved throughout the computational domain by solving
an elliptic partial differential equation on the Cartesian
mesh. The approach is analogous to modeling heat diffusion
from discrete heat sources in a conducting medium.

Thin-layered tetrahedra are generated in the ‘viscous’ re-
gions by the advancing-layers method (ALM), which is
based entirely on a modified AFM. The grid is marched
away from the surface along smoothed vectors with a user
prescribed distribution function, e.g. Eq. 7. As the cell sizes
increase, the Cartesian background grid provides for a
smooth transition to the remaining grid which is generated
by the conventional AFM.

The marching process of the ALM produces prismatic-
like layers of grid which are subdivided into 3 tetrahedra
within each “prism”, as illustrated in Fig. 2. As with the
flat-plate boundary layer grids, each ‘prismatic’ base cell is
resolved spatially by three computational cells for a tetrahe-
dral cell-centered scheme.

0 x 0.2<≤( )

Test matrix

Several tetrahedral grids, eight thin-layered and one con-
ventional, were generated for the ONERA M6 wing (see
Tables 1 and 2). The spatial sources for the background grid
were prescribed to produce a coarse (6483 triangles) and a
fine (8956 triangles) surface grid distribution on the wing
(see Fig. 5), and remained unchanged thereafter. Anisotro-

Fig. 5a Upper surface triangulation of ONERA M6 wing,
coarse viscous grid, 6483 triangles on wing surface.

Fig. 5b Upper surface triangulation of ONERA M6 wing, fine
viscous grid, 8956 triangles on wing surface.
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pic stretching of the surface grids was applied in the span-
wise direction to reduce the total number of required cells
while maintaining good chordwise resolution. A typical off-
body distribution of volume grid for the coarse mesh is indi-
rectly reflected in Fig. 6 by the centerplane grid of the WF2-

6(C) configuration. Note the smooth transition from the lay-
ered ‘viscous’ grid to the conventional inviscid grid. As is
evident in Fig. 6, the grid has characteristics of a structured
O-mesh, since clustering of cells in the wake region has not
been applied. Wake clustering is a topic for future research.

The designations “FV” and “WF” in Tables 1 and 2 de-
note “full viscous” with grid resolved sublayer, and “wall
function” with non-grid resolved sublayer, respectively.

aincludes two additional points in the inner layer

Fig. 6 Center plane triangulation of ONERA M6 wing, coarse
grid, WF2-6(C).

Table  1 . - Designations for ONERA M6 viscous tetrahedral
grids

Initial Spacing
Number of cells (nodes) across boundary

layer

≈12 cells
(4 nodes)

≈18 cells
(6 nodes)

≈30 cells
(10 nodes)

0.6 --- FV-8a ---
1.350 --- WF1-6 ---
2.025 WF2-4 WF2-6(C,F) WF2-10
4.050 --- WF4-6 ---
6.075 --- WF6-6 ---

Table  2 . - Parameters and characteristics of viscous grids.

Grid a
(see Eq. 7)

b
(see Eq. 7)

Number
surface

triangles

Number of
cells,
Ncell

Inviscid ------ ------ 6483 258,768 ------
FV-8 0.5 0.07 6483 414,038 1.60
WF1-6 0.95 0.07 6483 356,093 1.38
WF2-4 2.2 0.00 6483 324,356 1.25
WF2-6(C) 0.8 0.07 6483 356,472 1.38
WF2-10 0.2 0.07 6483 463,968 1.79
WF4-6 0.56 0.07 6483 359,268 1.39
WF6-6 0.432 0.07 6483 362,311 1.40
WF2-6(F) 0.8 0.07 8956 578,556 ------

∆n1 cROOT⁄( ) 10
4×

Ncell( ) Viscous

Ncell( ) Inviscid

--------------------------------

The numerical nomenclature, e.g. 2-6, provides a nominal
indicator of the (initial spacing)-(number of nodes across
boundary layer) at the 0.5 mean aerodynamic chord for a
Remac=11.7×106.

The full viscous grid, FV-8 was designed to have approx-
imately the same number of nodes in the outer layer of the
boundary layer as the WF2-6 grid, i.e. six nodes (18 tetrahe-
dral layers), plus two additional nodes in the sublayer, for a
total of 8 nodes (24 tetrahedral layers).

A conventional inviscid grid was generated from the
same wing surface grid, and with the same spatial source
distributions as the viscous grids, thus, serving as a refer-
ence for measuring the additional cells requirements for vis-
cous grids as shown in Table 2. Note that the viscous grids
require from 25-percent for the WF2-4 with 324,356 cells
(57,490 nodes) to 79-percent for the WF2-10 with 463,968
cells (80,927 nodes) more tetrahedral cells than the standard
inviscid unstructured grid. It is obvious from this table that
grid size can become rather large if more cells are needed
across the boundary layer. This factor highlights the strong
need for techniques, such as a wall function, to keep the
‘viscous’ overhead down to manageable levels.

A structured-grid computation was repeated from Ref.
[19] for comparison with the unstructured results. The grid
consisted of a 193×49×33 C-O mesh (294,912 hexahedral
cells) with a minimum normal spacing over the wing of
0.000015cROOT. This spacing matches that of the centroid of
the surface tetrahedral cells in the FV-8 grid. Ref. [19] re-
ports that this initial spacing resulted in an average n+ of 4
over the wing for M∞=0.84,α=3.06o, Remac=11.7×106.

Solution convergence

All turbulent flow computations in this study were per-
formed at the flow conditions of M∞=0.8447, a=5.06o, and
Remac=11.7×106, which represents a high Reynolds number,
transonic, separated-flow condition. A typical solution con-
vergence is shown in Fig. 7.

The reason for the leveling off of the residual curve at 3-
orders of magnitude reduction is not fully understood, but
may be due to an unsteady nature of complex flow separa-
tion in the wing-tip region. Note that the lift coefficient sets
up quickly, but it is necessary to run the solution longer to
allow for the separated region to evolve fully.

Resource requirements for the computations are pre-
sented in Table 3. All of the viscous cases were run with

Fig. 7 Solution convergence history for WF2-6(C),
(M∞=0.8447,α=5.06o, Remac=11.7X106)
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CFL numbers starting at 20 and ramping up to 150 over 20
cycles. The computations include the cell aspect ratio based
variable CFL scaling strategy discussed earlier with af∆t=6
applied. The time for the FV-8 case is based on mesh se-
quencing which will be described in a later section. Unre-
solved difficulties were encountered while attempting to
start the full-viscous case from freestream initial conditions.

The structured-grid computation was performed with
CFL3D using a multigrid strategy. The solution was con-
verged in 500 cycles, and required 16MW and 0.66 Cray C-
90 hours.

Comparison of methodologies

Fig. 8 displays, the surface flow patterns for the FV-8

case, which reveals a substantial shock-induced separation
on the outboard portion of the wing. These patterns were de-
termined from the reconstructed velocities at the first node
above the wing surface. The general pattern shown in Fig. 8
is representative of that from all the WF-series wall-func-
tion solutions.

Fig. 9 portrays a comparison of longitudinal Cp distribu-
tions for unstructured full-viscous and wall function solu-

aobtained with mesh sequencing

Table  3 . - Resource requirements for unstructured cases.

Grid Number of
cycles

Cray C-90
time, hours

Memory,
MW

Inviscid 300 0.6 46
FV-8 900/425 5.9a 75
WF1-6 1500 5.78 64
WF2-4 900 3.05 59
WF2-6(C) 2000 7.34 64
WF2-10 2500 12.38 84
WF4-6 1500 5.75 65
WF6-6 1500 5.88 66
WF2-6(F) 2500 15.53 104

Fig. 8 Surface “oil-flow” patterns for ONERA M6 wing, FV-8
grid (M ∞=0.8447,α=5.06o, Remac=11.7X106).

.95
.90

.80

η=.65

tions, a full-viscous structured solution [19] obtained with
the CFL3D code, and a reference unstructured inviscid re-
sult. The comparisons are presented at the four span stations

denoted on Fig. 8. The unstructured viscous results are in
the best agreement with the experimental data of Ref. [25].
Furthermore, the wall-function solution, WF2-6(C), is in
good agreement with the full-viscous solution, FV-8.

The structured result in Fig. 9, which also employs the
Spalart-Allmaras turbulence model, generally predicts the
shock location too far forward and misses the aft-chord
pressures. However, Ref. [19] demonstrated a strong depen-
dence of the flow solution on the selection of turbulence
model. Better agreement with data was shown in Ref. [19]
using other turbulence models. As a note of caution, the
good agreement of the unstructured results forη≥0.90 may
be fortuitous since the flow structure at the wing tip in Fig.
8 is extremely complex and may exceed the capability of
the one-equation S-A turbulence model.

Surface grid sensitivity

Fig. 10 shows the effect of surface grid density on the
chordwise Cp distributions at four chord stations. The WF2-
6(C) & (F) have identical initial grid spacings. The sensitiv-
ity to surface grid is small at theη=0.65 and 0.80 stations
where the separation is somewhat well behaved. Differ-
ences are much larger in proximity to the more complex
flow region forη≥0.90. The fine grid is in better agreement
with the structured-grid result at the latter two stations,
which once again highlights the strong sensitivities of the
flow in that region. Although sensitivities to surface grid
can be large in the complex tip flow region, the parametric
study of normal grid spacing was performed on the coarser
surface grid in order to reduce the overall computational ex-
pense.

Fig. 9 Cp distributions from unstructured and structured
grids for ONERA M6 wing. (M ∞=0.8447,α=5.06o,
Remac=11.7X106).
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Normal grid density

Fig. 11 depicts the effect of normal grid density (a hori-
zontal cut across Table 1) on the chordwise Cp distributions
at four chord stations.  The three solutions, which represent

12-, 18-, and 30-cells across the boundary layer, are gener-
ally in good agreement with each other and the experimen-
tal data.

The law-of-the-wall behavior of the boundary layer for an
attached-flow region of the wing (x/c=0.5,2y/b=0.15), is
plotted in Fig. 12. The fixed initial spacing yield n+=71 for
all three cases, while there are 4, 6, and 10 nodes across the
boundary layer corresponding to the WF2-4, -6, and -10, re-
spectively. Recall that there are three tetrahedra between
each nodal point contributing to the reconstruction of the
solution to the nodes.

Fig. 10  Effect of surface grid density on Cp distributions for
ONERA M6 wing. (M∞=0.8447,α=5.06o, Remac=11.7X106).

Fig. 11 Effect of normal grid density on Cp distributions for
ONERA M6 wing. (M∞=0.8447,α=5.06o, Remac=11.7X106).

Effect of initial grid spacing

Fig. 13 shows the effect of initial grid spacing (a vertical
cut through the WF-series of Table 1) on the chordwise Cp

distributions at four chord stations. Each grid is sized to

have approximately 6 nodes (18 tetrahedra) across the
boundary layer at the midchord of the mean aerodynamic
chord. For the test flow conditions, the initial grid spacings
yield an n+ of 48, 71, 146, and 218 for the first node of the
WF1-6, 2-6, 4-6, and 6-6, respectively, at x/c=0.5, 2y/
b=0.15. The sensitivity to initial spacing is negligible for all
cases at theη=0.65 and 0.80 stations, and for WF1-6 and
WF2-6 at η=0.90 and 0.95. As might be expected, the
agreement with data deteriorates at the higher values of n+

Fig. 12 Effect of normal grid density on law-of-the-wall behav-
ior at x/c=0.5, 2y/b=0.15 for ONERA M6 wing. (M∞=0.8447,
α=5.06o, Remac=11.7X106).

Fig. 13 Effect of initial nodal spacing on Cp distributions for
ONERA M6 wing. (M∞=0.8447,α=5.06o, Remac=11.7X106).
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for η≥0.90. This result suggests that fairly large values of n+

can be applied in conjunction with a wall function for more
well behaved separated flows. However, more restricted
values should be used in regions with complex 3D separated
flow structures, such as spiral separations or primary saddle
points, as depicted in Fig. 8.

Mesh Sequencing
The mesh sequencing strategy is often employed as a

means of accelerating solution convergence. This strategy
involves establishing the primary flow field relatively
quickly around a configuration using a coarse mesh, then
transferring that solution onto a finer mesh to complete the
final grid-resolved solution.

A demonstration of this procedure is provided for two of
the more costly wall function solutions from Table 3, the
WF2-6(F) and WF2-10, and for the full viscous case, the
FV-8. Fig. 14 compares computer time requirements (in

Cray C-90 hrs) to obtain convergence of residual error and
lift coefficient for the WF2-6(F) mesh. The solid curve ap-
plies to the single-grid computation which took 15.5 Cray
C-90 hours for 2500 cycles. The dashed line denotes the ap-
plication of mesh sequencing, starting from the coarse grid
WF2-4 solution at 900 cycles (see Table 3), interpolating
that solution onto the WF2-6(F) grid, and continuing to run
for another 700 cycles with CFL=150. The history plots in
Fig. 14 do not reflect the additional computer time used for
interpolating the solution from coarse to fine mesh.

The full benefit of mesh sequencing is presented in Table
4 for the three candidate cases, which includes the overhead
of interpolating solutions. Note that the total savings is on

Fig. 14 Effect of mesh sequencing on solution convergence for
WF2-6(F) grid. (solid - single grid solution, dash - mesh
sequenced solution), M∞=0.8447,α=5.06o, Remac=11.7X106.

Table  4 .- Resource requirements for mesh sequencing from
coarse grid, WF2-4.

Finer grid

C-90 hrs for
interpolating

solution

Add’l
Cycles
beyond
WF2-4

Total
solution time,

Cray C-90
hrs

Percent
savings

WF2-6(F) 2.1 700 9.5 39
WF2-10 2.4 300 6.9 44
FV-8 1.1 425 5.9 ---

the order of 40- to 45-percent for the cases shown. (A sav-
ings is not included for the FV-8 because of difficulties in
obtaining a single-grid solution for that case.) An additional
benefit is derived from the lower memory usage of the
coarse-grid solution (59 megawords for the WF2-4), thus
enabling primary flow to be setup more quickly while run-
ning in smaller queues on heavily used computers.

Concluding Remarks
A systematic study has been initiated to assess the utiliza-

tion of the cell-centered unstructured scheme for obtaining
accurate solutions to the Navier-Stokes equations on three-
dimensional configurations in an efficient manner. Closure
to the flow equations is provided by a one-equation Spalart-
Allmaras turbulence model, which is coupled with a wall
function.

Excellent accuracy in predicting the law-of-the-wall be-
havior and surface skin friction coefficient with tetrahedral
cells was demonstrated for the flat-plate boundary layer
problem. The applicability of the tetrahedral-based wall
function approach to 3D high Reynolds number, transonic,
separated flow was validated on a parametric set of grids for
the ONERA M6 wing. The validations were supported by
comparisons with experimental data and a companion struc-
tured-grid solution. The parametric study revealed that rea-
sonable viscous solutions can be obtained with approxi-
mately 25- to 80-percent more cells, hence memory, than a
standard anisotropically stretched inviscid grid. Guidelines
are established for prescribing an efficient distribution of
normal grid spacing. A 40- to 45-percent solution conver-
gence acceleration was demonstrated using a mesh sequenc-
ing strategy.

While the present study concludes with useful guidelines
and better understanding of the base methodology, the next
step of applying this knowledge to more complex geome-
tries is important. Work is currently underway toward that
end.
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